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ABSTRACT

A method has been proposed whereby any polynomial. can be approxi-

mated in an equiripple manner by a rational function. The properties and

form of this rational function are discussed. Several examples are used to

illustrate the theory. Most of these examples are chosen so that the approx-

imating rational function can be identified as a network function part; in

particular, the group delay has been given special emphasis. The ideal group

delay vs. frequency characteristic of filter is a constant. This type of

group delay is approximated in an equiripple manner.

In addition, a numerical scheme is proposed such that from a given

crude equiripple approximation a more exact solution can be obtained. An

example used to illustrate this approach is the problem of compensating the

non-constant group delay characteristics of a sharp cutoff low pass filter.
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1. HISTOR1 CAL BACKGROUND AND STATEMENT OF THE PROBLEM

1.1 Status of Equiripple Rational Functions as Used in Filter Theory

The use of equiripple polynomials (such polynomials are more commonly

known as Chebyshev polynomials) in filter theory has become classical knowl-

30 31
edge. 0' Briefly, these polynomials approximate zero in the normalized inter-

val (-1, 1) in an equiripple or Chebyshev fashion. Furthermore, consistent

with the degree of the polynomial, the maximum number of peak deviations is
8

obtained. To attain this maximum number of deviations, all of the polynomial's

degrees of freedom are utilized (the multiplying constant is not considered

a degree of freedom).

The elliptic function as used in equiripple pass and stopband

filter approximations is also of a classical nature.6 Instead of a polynomial,

however, the elliptic function is rational, i.e., a ratio of two polynomials.

Within the interval for which zero is being approximated, this rational function

behaves like the Chebyshev polynomials. Outside of this region a difference

occurs in that the rational function also approximates infinity in an equiripple

manner. Again the number of maximum deviations is the largest number possible

for the chosen degree of the rational function.
2 1

To obtain some freedom and more versatility in equiripple approxi-

25 5
mations, Sharpe , following closely the methods of Bernstein., developed a

rational function with equiripple properties within a prescribed interval.

Furthermore, the poles of this function were free to be chosen on the imaginary

frequency axis (outside the approximating interval) and on the real frequency

axis of the complex plane. Bennett 4 through the use of conformal transformations,

and Helman1 6 ) by extending the definitions of the Chebyshev polynomials, suc-

ceeded in developing a rational function with arbitrary complex plane pole

locations. Such functional forms are of a general type, the Chebyshev poly-

nomials and elliptic rational functions being special cases. In addition to

the above, many authors have contributed to the area of equiripple functions.

An extensive list of some authors is given in the literature.
3 1

1.2 Status of Constant Group Delay Approximations

,A complete history and a mention of all who have contributed to the

area of group delay approximations would be a volume in itself. Thus, only a

few of the most important will be mentioned.
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The first classical contribution in the area of group delay approxi-
28

mation was made with the appearance of Thompson's paper on the maximally

flat group delay. Later, Storch showed that the polynomial obtained by

Thompson was a class of Bessel polynomials, hence the common name "Bessel

filter". Utilizing the great storehouse of knowledge involving Bessel func-

tions, Storch gave this solution a very elegant treatment.

As the Bessel filter gives an excellent approximation near the origin,

but suffers somewhat for higher frequencies, a logical extension was an
22

attempt to approximate the group delay in the large. Several authors, among
14 18 10

the most important of which are Guillemin , Kuh I and Darlington have

succeeded in approximating the group delay in this manner to give near equi-

ripple group delay characteristics over a larger frequency interval. Briefly,

their methods of approach were (1) choosing an equally spaced pole distri-

bution parallel to the real frequency axis in the complex plane, (2) utilizing

a potential analog approach to determine the best pole distribution on an

ellipse in the complex plane, and (3) employing a Chebyshev polynomial series

to approximate a linear phase. At this point another approximation can be men-

tioned which would be classified as an approximation near the origin. It is
11

the so-called Gaussian magnitude approximation due to Dishal. The point of

view used here departs from that of the previous authors in that the phase is

attacked indirectly. Instead of considering the phase, the magnitude function

is made to approximate the Gaussian error function by truncating its Taylor

series expansion. The final result is a monotonically decreasing group delay

which is relatively constant within the passband.

Following closely the work of Helman 6, Ulbrich and Piloty29 utilized

Bennett's4 conformal transformation to formulate a set of non-linear simultaneous

equations that when solved would give an equiripple group delay. The set was

then solved using iterative techniques on a digital computer. The main dis-

advantage to their published:results is that the magnitude of the ripple is an

absolute number when, as shown in tte next section, the time domain error, or

dispersion, is proportional (in a first order approximation) to the fractional

or percentage group delay ripple. Recognizing this shortcoming, the author

employed the rational function developed in Chapter 2 to formulate a different

set of non-linear simultaneous equations which were also solved using an itera-

tive scheme on a digital computer. The author's work was just completed on

equiripple group delay, however, when Abele 2 published similar results.
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1.3 Ideal Low Pass Filterswith Near Constant Group Delay

One objective of tftis work is to obtain several realizable transfer

functions with an equiripple group delay characteristic. Since such systems

are used primarily for the transmission and filtering of pulses, a time domain

error in the impulse response of a filter due to the group delay ripple would

be of interest. If two reasonably valid simplifying assumptions are made,

an error estimate is easily obtained using the method first described by
32

Wheeler. These assumptions are (1) the group delay ripple is cosinu-

soidal, and (2) the group delay is approximately constant over the frequency

spectrum for which the filter does not give a large attenuation.

Consider a transfer function H(jw) which has a group delay T(W) of

the form

T(W) = T (1 - (-1)m E cos _ ) (1.)
0

0

where

T = average delay within the filter's passband0

E = the peak fractional group delay deviation

m = the number of half cycles of ripple the group delay

possesses in the interval (01Wo)

S= normalizing constant.0

The group delay for such an idealization is illustrated in Figure 1.

Utilizing the definition of the group delay

dB(w) (1.2)

the phase of H(jw) is found to be

3(w) = -T -W (-1m o) E mT sin (1.3)
0

Papoulis23 has shown, using Wheeler's method 32, that the impulse response i(t)

of the transfer function H(jw) with the phase characteristic of (1.3) can be

put in the form:

it) JJ (6) h (t kna (1.4)hitt-
k_ k W

k ý000
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where -j•
h(t) is the inverse of IH(jW) le 0

Jk is the Bessel function of the first kind, and

ET w
0mi (-1)m

If 6 is very small compared to one, (1.4) reduces to

i(t)h(t - 51 h(t + 6- ) (1.5)

0 0

For a lumped-element system the phase of the transfer function

approaches nlT/2 as w tends to infinity, where n is the number of poles less

the number of finite zeros. Hence, the area under the group delay curve

from w = 0 to w = - is nlT/2. If the fractional part q of this area follows

the boundary of the area from w 0 to w = w of Figure 1, then

o 2L
0

(-l)m Tat
2m

and (1.5) can be written as

2T 2-r
i(t) = h(t) + (ml)m Un- h (t - m 1 m - h (t + - - ). (1.6)4m 17 n 4m 77 n

A typical impulse response will then appear as shown in Figure 2.

From the foregoing analysis, several conclusions can be drawn. Some

of the more important are:

1. The output pulse is dispersed in the sense that the time bandwidth

product is increased because of the non-constant group delay.

2. The leading "echo" appears to give an anticipatory feature to

the filter. In a physical system, however, this echo would

in effect cancel with the main pulse to prevent such a phenomenon.
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Figure 2. Impulse response of a filter with the idealized group delay of
Figure 1



3. The magnitude of the two main distortion terms, centered at

T +± 2 T pi/n 71, is proportional to the fractional ripple E.

4. The distortion or error terms are proportional to n/m, i.e.,

the ratio of the number of 1T/2 multiples of phase at w =00

to the number of half-cycles of ripple.

5. The dispersion terms are proportional to the constant 77.

1.4 Statement of the Problem

The Chebyshev rational function of Helman and Bennett is a very

practical and useful form as applied to network problems. However, general

and useful as it is, it does possess some basic limitations. Two of these

are:

1. If a polynomial more general than a constant is to be approxi-

mated in the Chebyshev sense a serious difficulty is encountered.

For example: using Bennett's conformal transformation, suppose

a linear term is to be approximated with a rational function

of a chosen degree. The end result demands that the poles have

to be chosen in such a manner that a zero will appear in the

proper location to nullify the effect of a particular pole at

the same location. Because of its form, this would indeed be

a difficult task.

2. Some problems require a rational function approximation of a

polynomial such that the number of ripples is less than the

maximum possible number. Again the currently available Chebyshev

rational function is not adaptable to such a situation.

The problem is thus to develop a closed form rational function which

is general enough to solve many of the problems solvable with the existing

Chebyshev rational function and, in addition, be sufficiently flexible to

overcome the above stated difficulties. Once such a function is developed

there exist many practical network problems to which it can be applied; some

solved, and some unsolved. Thus, aTter the main problem has been studied,

several of the solved and unsolved varieties can be investigated with the

purpose of exploiting the potentials of another tool in today's existing body

of knowledge. Special emphasis will be given to group delay problems, as it
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has been only recently that equiripple solutions to this problem have appeared2932

and another method of attack would be of value.

As general as the rational function is which overcomes the two stated

difficulties of the Bennett and Helman forms, it is not difficult to think of

equiripple or weighted equiripple problems which are not easily adapted to fit

any equiripple rational function. With this in mind, a numerical scheme is

suggested and illustrated to solve some of the existing group delay problems

which may be encountered.
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2. THE DEVELOPMENT OF A PROCEDURE FOR APPROXIMATING POLYNOMIALS
WITH RATIONAL FUNCTIONS TO GIVE AN EQUIRIPPLE ERROR

Many problems arise wherein a rational function is desired which

approximates a polynomial. Often this polynomial is of a low degree; indeed,

most practical problems demand that it be nothing more than a constant. The

problem undertaken in this chapter is thus the determination of some proper-

ties and how to construct sich a rational function.

2.1 The General Case

The rational function

n i
a. x

R (x) 1=0 (2.1)
nm m

b. x
1

i=o

of given numerator and denominator degrees n and m respectively is to be

found which approximates the given polynomial.

PY(x) • c. x (2.2)

i=o

of degree I in an equiripple manner in the interval a < x < B. The constants
ai, bi, and c.i are all real, and, without loss of generality, bm is assumed to

be unity. If Rnm is to approximate P£ in [a,B]with an equiripple error of peak

deviation E then

P -E_< R < P + for a < x < B.
- m-- -
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The number of times the equality is satisfied as x takes on all values between

a and B will be called n . An upper bound on ne will be determined subsequently.

As an intermediate step in determining the numerator A nx) and denom-

inator Bm (x) or the rational function RxnmX), the error functions E +x) and

E_(x) will be defined. From these, some useful properties will be deduced.

E +(x) =R(X) - [P(x) + ]

(2.3)

E (x) =R (x) - (P2 (x) - E] ,- nm Z

or, in terms of A and Bn m

An - Bm (P + E)
E =

+ B
m

(2.4)
A - Bm (P -E)

E =- B
m

For an arbitrary example, the functions Rnm, P E+ and E_ are qhown in

Figure 3.

Except for one rare case, the numerator polynomials of E and E are+

of degree k where

k = the larger of fj+m

fn

The one exception occurs when n = m + I (n ;ý 0) and an = c. For this com-

bination, the degree of E+ and E is k - 1. If n = m + I with n = 0 the prob-

lem is trivial since only constants are involved. Thus, it can be concluded

that the number of zeros of E and E is k (for the above noted exception k - 1).+

For Rnm to approximate P in an equiripple manner with the largest possible

number of maximum deviations of ± E all zeros of E and E are required to be+

real. Furthermore, because of the tangency at the internal zeros these will

be double. The two zeros at the ends of the approximation interval wfil be

simple.



111

P, R R + CP+

SI I X
a /

E+

a

Figure 3. The functions R, P$ E+ and E_ of an arbitrary example
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The maximum number, ne, of ± E deviations is now easily determined.

Knowing that the total number of zeros involved in E + and E_ is 2k and all but

two of these are double, the number of extrema points is

2k - 2 2 k 1
e 2

Unless stated otherwise in the following, the k zeros of E and E+

will be assumed to be (1) real, (2) all double except the two at each end of

the interval, and (3) interlaced, i.e., in going from x = a to x = B a zero

of E +(E_) will be followed by a zero of E_(E+), etc.

Making the definitions

numerator of E+ = Q+ = An (P + E)Bm

(2.5)
numerator of E = Q = A (P -E)Bm

it is possible to distinguish five different cases which will exist depending

upon the degrees 1, m, and n. These cases are listed as follows:

Case Ia: n > I + m ; > k = n

k

Q+ = an H (x - gi)

i=l

k (2.6)

Q_ = an r (x - hi)

i =1

Case IB: n= + m >1 ; k = n

k.

Q+ = (an - c£) ] (x - gi)

k (2.7)

Q_ = (an - cI) r (x - hi)

i =1

I
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Case II: n > m =0 ; k = n

k

Q+ = a j (x - gi)

i=l

k (2.8)

Q = a Ti (x - hi)
- nlL.

i=l

Case III: n =m 0 k = n

k

Q+ = (a - c - E) (x - gi)

1=1

k (2.9)

Q = (an - c0 + E) F (x- hi)
1=1

Case IV: n < m =0 ; k= m

k

Q+ = - (c + E)TI (x - gi)
i =l

k 
(2.10)

Q_ = - (c - E) H (x- hi)
i =l

Case V: n< m 4- > k m +

k

Q+ = c, (x- gi)
i =1

k 
(2.11)

Q = -,.e, (x - h.)

i=l
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Two important differences to note in the above cases are (1) whether or not

the constant multiplying factors of Q_ and Q are the same and (2) the value

of k.

Knowing Q_ and Q+ in terms of the multiplying constant and the points

of maximum deviations, it is a simple matter to solve for A and B from (2.5).

The results are

(P + E) Q - (P• - E) Q

n 2E

(2.12)

Q_ -Q+

m 2E

Hence, R is
nn

An (P1 + E) Q- - (P- E) Q+

R = Q = (2.13)nm B Q -Q
m - +

which can also be rearranged to fit into the forms

Q_ +Q+

R = P• + E + (2.14a)
nm QQ - Q- +

Q
= P + E Q+ - Q_ (2.14b)

Q_
Rnm = P E + 2E Q_ - Q (2.14c)

The number of arbitrary constants for a given case can now be deter-

mined. The solution will be given in detail for Case Ia. The results are

tabulated in Table I for the remaining cases.

The defining relationships of Case Ia are n > A + m ; A > 1. From

these it is evident that k = n. and ne = n + 1. The following information is

obtained by an inspection of (2.1), (2.2), (2.6), and (2.13).
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n3 Z degree of Q+ Q =n- 1

n14 2 degree of Q (P), - E) = n + 2 - 1

n 5 •total number of constants

1 (E) + ne (number of error extrema)

+ I + 1 (number of constants in P2 )

+ n nx = 1 for case 2, zero otherwise)

=n + Y, + 3

n6 number of numerator coefficients to be zero so that n is the

desired integer

=n - n
=-1

n number of denominator coefficients to be zero so that m is the
7-

desired integer

=n 3 -m

=n- m-

n 8 number of constraints which have to be satisfied

n 6 + n7
= 2 + n - m -2

n9 number of arbitrary constants

n 9 - n8
m + 5

A word of caution should be inserted at this point. The arbitrary

constants are not unlimited in value. Rather, there are definite bounds placed

upon their range, this range being defined by the particular problem being

solved.

An example will now be given to illustrate the foregoing theory. A

rational equiripple approximation to the polynomial P1 = x is desired in the

interval (1, 10). The error extrema, El is to be 1/2, and the degree of the

numerator and denominator is to be 4. A solution is as follows:
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Since £ = 1 and m = n = 4, the inequality n < I + m is satisfied

and the problem fits Case V, hence,

(a) the maximum number of extreme points = 6

(b) the number of arbitrary constants = 8

(c) the number of constraints = 1.

Five of the arbitrary constants have been specified (E, co C1 , a, B). Since

the number of extrema - of which two are specified and three are arbitrary-

is 6, one extreme point will be defined when the others are chosen. The

approximation will be similar to the illustration of Figure 4.

From (2.13), the general form of R isnm

Q_ (PY + E) - Q+ (P E)
R44 Q_ Q(2.15)

Using the notation shown in Figure 4

2 2
Q+ = - (X - 1) (X X x2) (x - 4)

2 2 (2.16)

Q = - (x - l0) (x -x3) (x -x 
()2

The requirement that n = 4 places a restriction on the choice of the set

(x 1 , ... , x 4 ). Equating the coefficient Gf x5 to zero, or setting

x 4 - x 3 + x 2 - xI - 4 = 0 (2.17)

satisfies the demand.

An arbitrary choice of x1 , x2, and x 3 is 3, 4, and 8 respectively.

This choice makes x 4 = 11, but this is outside the approximation range and so

cannot be used. Similarly, a choice of 1, 7, and 8 for x1 , x2, and x 3 respec-

tively requires x 4 = 6. Again this cannot be used because x 4 must be greater

than x 3 and less than 10. A choice of 3, 5, and 7, however, gives a realiz-

able x4V namely 9. With the last set of x. 's the rational function reduces to

1.5x - 34x3 + 337x2 - 1578x + 3217.5 (2.18)
R44= x - 28x3 + 2942 - 1356x + 2385

f1
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R 4 4 (x)

x, x2 X,3 x 4  10

Figure 4. The polynomial P = x approximated in an equiripple manner withR44
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Before continuing on to another topic, one more detail needs to be

investigated. This detail concerns the possibility of the existance of another

rational function R which (1) passes through P2 • E at the ends of the
mm

approximating interval (a, f3), (2) is still tangent to P and passes through

P) ± E at the internal points xl, x 2, ... xne_2' and (3). yet) doesn't

intersect PI within (a, B). Seemingly, such a rational function (Figure 5)

is easily sketched. From such a sketch, however, it is observed that outside

the interval (a, B) the function R must satisfy
nmm

I - nm < E (2.19)

or R will intersect with P ± E. Such an intersection is impossible,nm2

however, because the degree of the numerator of E+ is not large enough to

permit any more intersections. As E, a, and B are arbitrary, it is concluded

that the inequality (2.18), cannot hold.. Hence, R does not exist.nmm

2.2 Even Rationals Approximating Even Polynomials

The case under consideration is a special, but important, case of

Section 1. Because both Rnm and P are even, only one half of (-8, B) need

be considered. The approximation is carried out as though P was being approxi-
2)2

mated in (0, B3). Then at every zero of E +and E the factor (x - x.i) is replaced
2 2+ -1

by (x - x. ). Several examples of this type of approximation are given in1

Chapter 3.

2.3 Odd Rationals Approximating Odd Polynomials

Again this is a special case of Section 1. Under the assumption

that Rnm and P are odd, the following conclusions can be drawn:

a. From the arbitrary odd approximation shown in Figure 6 it is noted

that

K Q (x) = -K+ Q+ (-x)

where K and K are multiplying constants.+

b. Since P is odd, k j 0; hence from Table 1 it is seen that the

multiplying constants of Q and Q are equal. Thus

K_ = K .
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Rnm

/-Rnm( X)

I ~ ~ ~ P IW I I

a X: X 2Xne_

x
a xI 2 x3 Xnez /

Figure 5. The rational function R and R which both go through P• ± E

at x = a, B and are tangential ?oo P4 , and pass through PI ± E

at the internal points x,, x21 ... Xne_2

2'.. ne"



21

Rnm

/i

JL 
Rnm

//g
/E

- X3 
-X2II

I~~ 
I 

,X / x 2 x 3

Figure 6. An arbitrary odd polynomial P approximated by an odd rational
function R

nm



22

c. Finally, it is observed that

P (X) + E = - [PI(-x) - E] .

Putting all three conclusions into (2.13)

Q+(-x) [P (-x) - E] - Q +(x) [PI(x) - E]
R =

nm -Q'(-x) - Q Wx)
(2.20)

Odd [Q+(x) [P,(x) - E])

Ev [Q+(x)J

where Odd and Ev are operators which are defined to take the odd and even

parts, respectively, of what follows.

Examples of this type approximation are given in Chapter 3.

2.4 Observations and Summary

In this chapter a rational function has been developed which will

approximate any polynomial in an equiripple manner. The method has several

desirable features. Some of these are:

a. There is a large amount of freedom available in the form of

arbitrary constants, for fitting the rational function to a

wide range or problems.

b. The rational function need not be restricted to approximating

only constants as does the rational function of Helman and

Bennett.

c. Tiough not mentioned explicitly, this rational function need

not approximate P with the maximum number of ripples. If

fewer ripples are desired, instead of using the factor (x - x.)

in E+ where x. is positive and real, the term x. can be made

negative. Indeed, quadratic factors with complex roots can

be used, if desired, to decrease the number of ripples. As

the constants within these factors are arbitrary, the rational

function is given a more arbitrary character. An example of

this type is given in Chapter 3.
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Sbme limitations on R as developed in this chapter are:

nmi

a. The denominator is the difference of two polynomials and is

not in factored form.

b. In developing a rational function R which approximates a highnm

order polynomial or has several zeros at infinity, several

non-linear simultaneous equations will have to be solved.

The above limitations, however, are overcome to a large extent by

the ever increasing availability of high speed digital computers.
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3. APPLICATIONS OF THE EQUIRIPPLE ERROR RATIONAL
FUNCTION OF CHAPTER 2 TO NETWORK PROBLEMS

The well known theorem of Weierstrass says that any function con-

tinuous in the interval (a, b) may be approximated uniformly by polynomials
9

in this interval. In general this requires a polynomial of infinite degree.

Fortunately, there exists a large class of problems which do not require an

approximation of such high degree. Indeed, in many problems the desired

function is itself a low order polynomial. Such is the case with many of the

network function parts.

A network function is a rational function of the complex variable

s, which may in turn be broken up into several parts, many of which are them-

selves rational in the real variable w. Among these are the real part, the

imaginary part, the magnitude squared function, and the group delay function.

This chapter will thus be devoted to finding a rational which approximates

a low order polynomial and yet can be identified with one of the above network

function parts. This in turn may be physically realized by conventional

techniques if desired.
3 0

3.1 Real Part Approximation

The real part of a network function H(s) is a rational function of

the real variable w. That this is the case can be shown very easily by con-

sidering the network function.

M1 +N1

H(s) = (3.1)
M2 + N2

where M2 and N2 are the even and odd parts, respectively, of a Hurwitz

polynomial in the complex variable s = a + jw. Similarly, M1 and N1 are the

even and odd parts of any polynomial. From (3.1) the even part

MM2 - N1N
Ev H(s) 1 2 1 2 (3.2)

M - N2

2
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is easily found. By inspection this is also a rational function. On the

real frequency axis s = jw, and the even part becomes the real part

Re H(jw) = (3.3)M2 - N2
M22N2 2 Sj

which is rational in the real variable w.

If a rational function is to approximate a polynomial and yet be

identified as a "positive real" real part it must not only approximate the
30

polynomial, but satisfy the following properties:

a. possess no poles on the imaginary axis

b. the poles and zeros must have quadrantal symmetry

c. if the denominator of H(s)is of degree t, then the denominator

of Ev H(s) is of degree 2t. The degree, 2r, of the numerator of

Ev H(s) must satisfy the inequality

0 < 2r < 2t

d. imaginary axis zeros of Ev H(s) must be of even multiplicity.

If H(s) is not positive real d and a can be relaxed.

Several examples will now be given wherein a low order polynomial

is approximated by the rational function of Chapter 2, and yet is manipulated

to satisfy some or all of the above positive real properties.

Example (3.1)

A rational function is to be obtained which satisfies all of the

above positive real properties and in addition is to

a. approximate the degenerate polynomial "unity" with a tolerance

of unity

b. have a maximum number of extreme points which are separated by

equal frequency intervals

c. have a denominator of degree 2N

d. approach the constant value of 4 for high frequencies.

An illustration of the desired function is shown in Figure 7 for N even and

N odd.
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Figure 7. A sketch of the desired real part. The function is given for pos-
itive frequencies only as it is even
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Solution:

It is first observed that ) = O, and m = n so that Case III of

Chapter 2 applies to this example. Furthermore, Rnm and P are both even

so the corresponding simplifications can be used. For the half-interval

(0, N) N- 2
2

Q+ = (a 2N- I - E) (u - N) w j [w - (N- 2i)]

i-i

;N even

N12

Q_ (a 2 N 1 + E) rj [w - (N - 2i + 1)]2

i=l

(3.4)

N-1
2

Q+ (a2N (I- - N)H j[w- (N- 2i)]2

1=1

N odd.
N-i.

2

Q+ = (a2N I + E)w r [w- (N - 2i + 1)]2

i=l

The constant a 2 N can be used to satisfy requirement (d); then using (2.13) with

E = 1 the final result

N/2 22 (3.5)

4 l [w2 
- (N- 2i + 1)2]

2 i=l
RH (W N-)2; N even

N/2 2

2 H [w 2 (N- 2i + 1) 2 W (W -N 2 (N-2] 2

i=l i=1
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N-1 (3.5)
2 

2

4 w
2 17 [W

2 _ (N - 2i + 1) 2

R 2HN(W2 i=l
=eN N-I N-I 1 N odd

2 2 2 2

2 w
2 2j [w 2 - (N- 2i + 112 (W 2 _ N2) f [W2 _ (N- 2i) 2

i=l i=l

valid in [-NN] is obtained. With N = 1, 2, 3, and 4, the above reduces to:

4w2

R H (w2) 4

w + 1

ReH2 2 4(w -_ 1)

RH (2 ) 4 +2
w

(3.6)

ReH (W
2  = 4w (w - 4)

e3w6 5w + 13Iw 2 + 9

RH 4 (w
2 ) = 8 4(w2 - 1)2 (w - 9)2

ew - 16 6w + 92w4 - 104w2 + 162

By inspection, (3.6) satisfies the properties of the real part of a positive

real driving point function.

Example (3.2)

A rational function, G is to be obtained with the following con-

straints:

a. approximates the degenerate polynomial "zero" in an equiripple

manner

b. .1m ReGN 0
W-.'x' e N

2 2n
c. R G (n = (-1) for n - 0 + 1 + 21 .. (N-

d. RG = 0

e. has 2N-1 extreme points.
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The rational function to be determined is sketched for positive frequencies

in Figure 8.

Solution:

This problem appears to fit Case IV, however, two differences are

noted; (1) the approximation interval extends from minus to plus infinity, and

(2) the number of extreme points is 2N-1 which is less than the maximum 2N+l.

To modify Case IV such that is meets the stated requirements,

imaginary zeros are placed at i =+ ja in Q+ (Q_) for N even (odd), thus

giving:

N- 2
2

2 2 - 2 22

Q+ =- (2U + a2 ) (W - 4i )

i =1

N even
N/2 2

Q_ = [2 _ (2i- 1)2]

i =1

(3.7)

N-1
"---2T 2 2 2

Q+ -w J (w -4i)

i=l
N odd.

N- 1
22

Q- =(W2 + a2) [W2- (2i 1)]2

i =1

Substituting these values in (2.13)

N- 2

N/2 2 2 2

S[W 2 _ (2i- 1) 2 ] _w2 (w2 +a 2 ) (W2  4i2)
RG =i=l i=leN N-2 ; N even (3.8)

N/2 2 2 2

[W2 - (2i - 1)2] + 2 (W2 + a2 J (w2 - 4i2 )
i=l i =1
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Figure 8. The real part of a network function which approaches zero for large
frequencies
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N-I N-i
22 22

(w2 +a 2 ) +w[
2 - (2i- 1)2] 2 j-(W2 4,2)

RG 1- I ; N odd. (3.8)
e N N-i1 N-i1

2 2 2

(W 2+a 2 ) f [lW2 _ (2i- 1)1] + w2 Hc(W2 - 4i21

i=1 i=l

As a2 is arbitrary it can be specified so that the numerator of (3.8) is zero

at w = 1/2. After several algebraic steps, the value of N(N-l) is obtained
2

for a

Later in this chapter R G will be used for another example, there-e N

fore, it is tabulated for N = 2 through 6 as follows:

2

R G -4u + 1
eG2 4 + 1

RG = 12w 4 - 27w 2 + 6eG3 6 4 2
2w6 4w + 5w 2 + 6

R G -24w.6 + 198w4 - 372w2 + 81 (39)ReG4 8 63492
2w 8 - 16w6 + 38w4 + 12w2 + 81

8 6 4 2
RG 40wu - 810w + 4740w - 7615w + 1620

e5 U2wP - 40W8 + 246w6 - 380w4 + 577w2 + 1620

_(108642

RG -60u10 + 2415w8 - 31860w 6 + 155535w - 2394 3 0w2 + 50625
ReG6 2w - 8OI0 + 1071w8 - 5300w.6 + 10127w 4 + 6330w 2 + 50625

It is apparent that the above functions satisfy the properties of

a real part function; however, it is not a positive real one.

Example (3.3)

A rational function ReKN is to be found which has the properties of

a real part function and yet approximates cos TT w within the interval (-I, I).
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Solution:

The function developed in Example (3.1) approximates cos n w in

the required interval; however, a better approximation can be obtained if

the rational function is zero not only at w = ± 1/2, but also at w = ± 3/2.

To satisfy this last added condition requires another arbitrary constant.

A rational function is thus chosen with the maximum number of extreme points

all except the last of which are separated by a unit increment. The last

extreme point and the value of KN at infinity will then be used to place

two zero crossings at w = ± 1/2 and ± 3/2. A sketch of the desired rational
function ReKN is shown in Figure 9.

From an inspection of Figure 9, Q+ and Q_ can be easily determined.

Placing these quantities in (2.13) gives the rational function

N-2
N/2 2 2 2

(a2N+l) N/ [w2 _ (2i-1) 2 + (a2N-l)w2 (W2 -b2) (-4i2 )

i2=1 i2=1

R K N ve
eKN N-2 ; N even

N/2 (W2 2

2e' 2N
(a2N+l) L w2 - (2i-i)2] - (a2N-l)w2(w2-b2) (w (-4i2)

(3.10)

N-1 N-1
2 2 2 2

(a 2 N+l) (w 2-b2 j [W2 _ (2 i-1)2]2 + (a 2 N-l)w2 (W 2-4i 2
i =1 i=l

RK = KN- N-; N odd.

2 2 2 2

(a +1) ()2_ 2b) [ 2 _ (2_)2] - (a l)w 2 H (2 24i2
2N L.2N(-i)

i=l i=l

Letting w = 1/2 and setting the numerator equal to zero gives the

following equation:

N- 2

(a +N 1 22a2N (1 - 40 1o + 4i

(( - 2+ = ; N even (3.11)
(a 2N 1+ (2N - 1)2 (2N - 3)2 i= 3 - 4i
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Figure 9. A rational function which approximates cos w
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N-I

2 (a 2 N- 1) + 4i 
2

(1 - 4b ) + ;a + 1) N odd. (3.11)

In a similar manner except with w = 3/2

N-2

2N3 2- ___i' + 4i(a 2N (2N + 1)2(2N - 5)2+ 9(9- 4b) 2 -- = 0 N even
a2N 1L \+ 4i 5 4i=l

(3.12)
N-i

(a 2N 1) 2 i)23+4
(9- 4b,) + 9-- 0 ; N odd

(a2N 5 + 4i - 4i

The appropriate values for b2 and a2N can now be obtained from the simultaneous

solutions of the linear equations (3.11) and (3.12). After many algebraic steps

the solutions

N
a 2 N = (-1) 4N(N - 1) 

(3.13)
4

2 1 ( (2N- 1)4
b~ +

(2N - 1);! - 2

are obtained. It is now possible to determine the explicit expression. for

ReKN for any N. This is done for N = 2 through 6 as follows:

R K 16w4 - 40w 2 + 9
Re2 =2w4 + 4 5.+ 9.

R K -48w6 + 408w4 747w + 162 (3.14)
2w6 + 8w4 + 53w + 162

RK =96w - 1968w 6 + 11430w4 - 18612w2 + 3969
ReK4 = 2w8 + 8W6 + 134w4 + 972w2 + 3969
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(3.14)

R K -160w + 6480w8 - 85290u)6 + 417460w 4 636975w2 + 134460
e 5 10 6 4 2

2w + 246w + 2740w + 26577w + 134460

240w - 16920w10 + 421335w 8 - 4501140w6 + 19956375w - 29216790w 2 + 6125625

e 6 2w - 20w10 + 471w 8 + 4780w 6 + 88727w4 + 1011690w 2 + 6125625

A check of the accuracy of the sinusoidal approximation at w = 1/4

gives an error of .248, .0184 and .00296 percent for N = 2, 3 and 4 respectively.

This section on real part approximation will be completed after a

novel technique is presented for obtaining linear phase all-pole transfer functions.

From the theory of the Hilbert transform, if the real part of a network function
13

is cosinusoidal then the imaginary part will be sinusoidal. Hence, the phase

S=tan- 1 im part = tan- 1 sin T w = T w (3.15)
real part cos 7 w

will be linear.

The one drawback to the above is that the sine is the Hilbert trans-

form of the cosine only if the latter is defined for afl frequencies. If, how-

ever, the real part is cosinusoidal over the finite frequency interval (-woi wo)

and zero elsewhere, then the imaginary part will be roughly sinusoidal in the

vicinity of Lu = 0. The reasoning for this last statement is best explained by

noting the Hilbert transform of the cosine

1 f cos d
Im part = +- •_ f - w (3.16)

This integral relationship indicates that the behavior of the imaginary part,

at a frequency w, is due primarily to the integrand within the vicinity of
1

W . The modulation of the cosine function by I is so slow outside this
o ý -

vicinity that the positive and negative areas nearly nullify each other.

The real part function developed in Example (3.2) is near cosinusoidal

in the interval (-N, N) and approaches zero elsewhere. Hence, using the well
30

known Brune-Gewertz technique, the function G N(s) can be obtained from

R eG Nw 2). This method involves the factorization of the denominator polynomialeNlyoma
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and the solution of several simultaneous linear equations; these tasks make

it a very laborious problem for high order real parts. To overcome these

difficulties, a digital computer program was written to perform the necessary

operations. The resulting GN(s) obtained by this program are given below for

N =2-6.

G -1.08719s + .707107
2 2

s + 1.18721s -+ .707107

2
G 1.87170s - 2.16633s + 1.73205G3 3=

s + 2.04823s2 + 3.09762s + 1.73205

G - -2.64461s3 + 4.34677s - 10.1194s + 6.36396 (3.17)G4 =4 33.12
s + 2.89390s3 + 8.18732s2 + 10.4980s + 6.36396

G 3.41295s4 - 7.25399s3 + 33.0873s2 - 39.2985s + 28.4605G5 5 45
s + 3.73461s4 + 16.9736s3 + 34.8719s2 + 47.6806s + 28.4605

-4.17925s5 + 10.8879s4 - 816213s3 + 139.974s2 - 252.955s + 159.099G6 =6

6 s 6+ 4.57310s5 + 30.4566s4 + 86.7753s3 + 200.779s2 + 258.945s + 159.099

Though it isn't immediately apparent without factoring the numerator,

all the zeros of GN (s) are in the right half of the s-plane. Furthermore, the

phase of a right-half plane zero at a + j{Vl is indistinguishable from the phase

of a left half plane pole at -71 + jWl" Therefore, if an all pole transfer

function GN(s) is desired, it can be obtained from GN (s) = N(s)/D(s) by replacing

s with -s in the numerator N(s), and then placing N in the denominator. Hence,

A
GN(S) - N(-s) D(s) where A is a constant.

From the GNsN) so obtained, the group delay response was calculated and plotted

as shown in Figure 10. From this plot it is concluded that:

a. The group delay approximates rr as predicted in (3.15).

b. The approximation is better near the origin as predicted.

c. The approximation is better near the origin for higher values of N.
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d. Thb group delay is relatively constant within the 6 db passband.

e. The number of group delay ripples is not a maximum.

3.2 Imaginary Part Approximation

The imaginary part of a network function is an odd rational function

of the real variable w. This is easily shown by considering the odd part

N1M2 -N2M1

Odd H(s) 1 2 2 1 (3.18)
M2 2

of the network function of (3.1). It is now clear that upon letting s = jw

the above will be an odd rational function in the real variable w multiplied

by j. Hence, it is the imaginary part.

The primary property of the imaginary part is that it is odd. How-

ever, if the rational function of Chapter 2 is to be identified as an imaginary

part, it must also possess the properties30

a. the numerator polynomial must be odd

b. the poles must have quadrantal symmetry

c. the degree of the numerator must be less than or equal to the

degree of the denominator plus one, equality holding if H(s)

has a pole at s =

Several specific examples will now be given wherein an odd poly-

nomial is approximated by an odd rational function to give an equiripple error.

In addition it will be seen that the rational function so obtained also satisfies

the above listed properties of an imaginary part.

Example (3.4)

An odd rational function is to be found which

a. approximates the polynomial P1 = w in the interval (L10, 10)

b. has a peak error of unity in the passband

c. has a 4th degree denominator and ist degree numerator, and

d. satisfies the properties of an imaginary part of a network function.

Such a rational function is illustrated in Figure 11.



39

I H(W)
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10-WI -W2__ __ _

Figure 11. An odd rational function approximating the polynomial P1 w
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Solution:

Both the rational function and the polynomial are odd, hence the

rational function can be determined from the simplified form of (2.20). By

inspection:

Odd (w - 1) (w + 10) (w + w2 )2 (w - Wl)2
H(w) = 221(3.19)

Ev (w + 10) (w + W2)2 (w - Wl)2

Obviously, the denominator is fourth degree, but the numerator is of fifth

degree. Thus, wI and w2 will have to be used to set the coefficients of
5 3

w and w equal to zero.

5
The coefficient of w is immediately observed to be

a5 = 9 - 2wI + 2w2 = 0 . (3.20)

Solving for w1

9
WI = w2 + • . (3.21)

With this relationship (3.19) can be manipulated to give

(_9w22 8'1 1089 w3 4 3 +"369 W22 (3.22)
S+ ) + (9w 2  + 8 1w2  4- 405 2 )w

H(w)= 4 )llw2 99 405 2 4 3 + 81 w2

( -)1 2  + 2 W 2  -2-) W +l10(W 2  + 9w2  +T 2 )

Setting
2 81 1089

-9w -2 - w2 +- = 0 (3.23)
2 2 W2 + 4

satisfies all requirements of the stated problem. The values of w2 and Wl,

determined from (3.21) and (3.23) are

w2 = 3.69243
(3.24)

W1 = 8.19243

Thus, the final form of H is

5513.06w
H(w) 24 .6(3.25)w -130.250w2 + 9150.62
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This function satisfies the properties of an imaginary part, and a

Z(s) could be found with the above H(w) as its imaginary part if desired.

Example (3.5)

Whenever high order polynomials are to be approximated by rational

functions whose numerator degree n is less than the degree of the denominator

m, several complicated, non-linear, simultaneous equations have to be solved.

This example is chosen to illustrate this point. In the interval (C'10, 10) an
3

odd rational function G is to be obtained such that it approximates P3 = w

in an equiripple manner. Two solutions are obtained. One gives a maximum

error ripple of one with the degrees m and n equal to 4 and 3 respectively.

The other solution considers the problem with m and n equal to 4 and 1 respec-

tively. The anticipated approximation is shown in Figure 12.

Solution:

By inspection of Figure 12 and using (2.20)

Odd (w? - E) (w +4 10) (w + w3 ) 2 (w - w4) 2 (w - W2)
G(w) = 2 (3.26)

Ev (w + 10) (w + W3-) (w W 4 ) (w -w2)

Note that as (3.26) now stands, m = 6 and n = 9. It appears as though fopr

coefficients have to be set equal to zero in order to satisfy the first sub-

case. Upon closer examination of (3.26) however, it is seen that the co-
69

efficients of w6 and w are identical, thus reducing the number of simultaneous

equations to three.

The polynomial coefficients of the numerator, N(w) and denominator,

D(w), are obtained in a straightforward, but lengthy, manner. They are

9 2 7 2 2 5
N(w) ;((1024)w-+)(l0a +20b+2c+2ab-E)w + [10b +20ac+2bc"E(20a+a +ab)]w

2_' 4- 2
+ [lOc -E(20c+2Oab+b-,-+2ac)]w4- E (20bc+c )w (3.27)

D(w) = (10+2a)w6 + (10a 2+20b+2c+2ab)w4 + (10b 2+20ac+2bc)w2 + loc2
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G(w) 3 =W3

-10o-W 2 -w3  -wý4 ww

Figure 12. A rational function approximation of
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where

a -w -2 + W 3 - W 4

b =-W + w2 4 I+ W3 W4  (3.28)

3 2= 4030 3"

9 7 5
Setting the coefficients of w , w , and w equal to zero and solving the

resulting equations for a, b, and c in terms of E, gives

a=- 5

250 +
b =- 50 - (3.29)

250 - E

2 20
125 + E

c =125 2 50
E

125 - -
2

It is noted that if E is known G(w) can be obtained directly from

a. b) and c without having a knowledge of w 2 ) , V and ww4 if) however) these

values are desired, the cubic

B3 +aB2 + bB + c = 0 (3.30)

can be factored, the zeros of which are then w 2 ; w 4, and - w3 .

Letting E = 1, the equations (3.29) can be used to obtain a, b, and

c. From these and (3.27), the coefficients of the w terms can be calculated.

The G so obtained is

152474.91w 3 + 111640.59w(G(w0) = 4,2t (3.31)

w - 175.6024w 2 + 161305.3

The frequencies of maximum error can be obtained from (3.30). They are

W4 = 2.24838

w3 = 6.26492 (3.32)

w2 = 9.01654

This is one of the required solutions to the approximation problem.

The other is more difficult to obtain in that the ripple factor E must be used
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to set the coefficient of w equal to zero. This particular coefficient is

a function of a, b, c, and E. Since, however, the dependence of a, b, and

c upon E is known from (3.29), this coefficient can be determined solely as

a function of E. With this coefficient set equal to zero, and after the

usual algebra, the following fourth order equation in E results:

1 - 8 -) + 3 + 5 ( 5- 1 = 0 . (3.33)

Factoring the above, the possible E's are found to be

E = 33.26862; 250; 1321.9980; -355.26665

From these roots it is seen that even the smallest value of ripple is com-

paratively large. Using the smallest value the corresponding G is

205383.5w (3.34)
G(w) 4 2

w 4 198.0 2 52 3 w 2 + 11927.04

The maximum error then occurs at the frequencies

U4 = 2.94838

*3 = 7.25754 (3.35)

w2 = 9.30916

If desired, the Brune-Gewertz method could be used to obtain a

function Z(s) which has either of the above G(w) for its odd part.

3.3 Magnitude Approximation

The properties of the magnitude function are easily obtained. From

the network function H(s) defined in Section 3.1, the magnitude squared

function is found to be:

2)12M - N
[H(w2) = H(jw) H(-jw) M12 1 2 (3.36)

M22 _ N22 s=jw
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From this it is concluded that any even rational function of w having the

properties that
1 4

a. all poles and zeros have quadrantal:symmetry

b. any pole or zero on the real frequency axis is of even multiplicity

c. the function is positive for all frequencies

can be used for a magnitude squared function.

The magnitude squared function most often used for filters is con-

veniently expressed as6

22
IH(w 2) = k = 0) 1 (3.37)

1 + 2' wkF(w2)

where a is a positive real constant less than one and the function w F(w 2) is

chosen in such a manner that it is small (usually of unity peak value) in the

passband and large in the stopband. This w-F(w2) will then give a magnitude

squared function which approximates the ideal square magnitude function. 1 4

In Example 3.6 an w kF(w 2) is found by the method of Chapter 2 such
23

that the ideal low pass magnitude function, defined as

1 for -1 < w < 1
H =

0 elsewhere

is approximated in an equiripple manner.

Example 3.6

Several w F(w ) are to be found such that the degenerate polynomial

P = 1/2 is approximated with a ripple factor E = 1/2 in the interval (-1, 1).0

Outside of this interval the approximating function is to be large.

Solution:

To satisfy the last statement of the problem demands that n > m.

Hence, depending upon whether the equal or greater than sign is used, the

approximation fits either Case II or III. For the present discussion assume

the maximum number of ripples;thena desirable rational function would appear

as shown in Figure 13. Using the notation of Figure 13, the rational function,

call it f (w 2) for brevity, is
N



46

fN (W 2)

N even

1 --- - -- .-- •7. ... .

0 to°°2 W1

Figure 13. An equiripple rational function which can be used for filter
magnitude approximations
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N-i

1 2(3.38)

2 2 j (N 2 

o d2i-12)2

f (w ) =;N
N N-I N-i

2 2 a-b 2 2a2N- i-2)

W 2 (2 _ 2 2i-I a 2  (( ) (2_W2ia2N
i=l i.=l

N

2 2H (W - 2i-i) 2

f (W = N-2; N even
N N N

2 2 a2-b 2 2

(w2  2 a 2N 2 (2 _2 Hl (u)2 W2 2i)
a2 N

where 0 if m < n

b = jii ~
f1 if m =n

To obtain the classic Chebyshev polynomials the w. 's are so chosen
1

that all the poles of (3.38) occur at w = infinity. This means that b = 0
2i

and the N-1 denominator coefficients of w , i=l, ... , N-i, are equated to

zero. This gives N-i equations and as many unknowns. Hence all w). 's are1

uniquely specified by the process. An illustration of the method for N=4

is given as follows: Expanding the denominator, the polynomial

w 6(1 + 2w 2 2 _2w)1 2 _2w 3 2) +W4 (W)14 +4w 34 +4w 1 2 W 3 2- 2w2 2 - w22) (3.39)

+ W 2 (W 22 - 2w 1 4 32 2w 34 W 1) + W 1 4 W 34

results. The 3 simultaneous equations are then

1 + 2w 2 2 = 2(w 12 + W 32) (3.40)

2 2 2 2 4 2 w32 2 2 2 2

w~l+w2  2w -~3 +w=(wI +4w3  +4w 2j 2 2 2I(.9

4 2 2 4 l2 2
2 2 = 23 1 w3 3+ W3
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2 2 2 2
Letting x = wI + W3 ; y = WI w3  the solutions x = 1, and y = 1/8 are

obtained. Using these results

f 4 (w 2) = (8W4 - 8w2 + 1)2

which is recognized as the square of the Chebyshev polynomial of 4th degree. 8

Another classical design is the elliptic filter with an equiripple
6

magnitude in both the pass and the stopbands;. It can be shown that for such

a filter the f (w ) function has poles and zeros which are reciprocally

related, i.e., if w is the proportionality constant,

W .W = W (3.41)
pi zi c

where w pi(w zi) is the location of the ith pole (zero).21 A sketch of f N(w)

is shown in Figure 14.

The elliptic functions for N=2 and 3 can be obtained rather easily

from (3.38). Letting b = 1 and 0 for these two respective cases, the required

polynomial equivalences are
2

2 2

(W2 02 2 _(a 471) 2 (w2 -1 =- 2 _w - N = 2I a 4 M 2 W 1

(3.42)

2

2 2 2 2 2 2 2 2 1 W2 cl

W( - w. ; N= 3
M2 1

Equating coefficients and solving for the unknowns in terms of w andC

respectively, gives the following solutions

2

2 2 ( 2 
- 22

f 2(w 2) = M2 (W W (3.43)

2 22
2 2

Wl1

where

M = (Wc + Wc )



49

I N even
fN (W2 ) N odd-'-,-

M 2 . , - "

I

N even I

N odd I

-'W

W3 W2 UJ-- (

Figure 14. The fN function for the elliptic filter

Ni
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2 2 2
1i =C C

Similarly,

2 2 W(w 22 
2)

f3 (Lu. M (3.44)
2

2We(w2 - )2

where

2
2 3M 2

2 3M- 1 2
+ I

2 -4
Wc 2

-2 2M = f3(w ( )

21
Both solutions agree with those given by Papoulis , who arrived at

them in a somewhat different manner.

For higher orders of N, extensions of the above procedures would lead

to several non-linear simultaneous equations; however, because this problem

has been given a more elegant solution in the literature 31'6 it will not be

pursued further.

3.4 Constant Group Delay Approximation

The group delay, T, of the all-pole transfer function

A A
H(s) = -- = - ; R s. < 0 (3.45)

M2 + N2 N e 1
H (s -si

i =1

where M2 + N2 are the even and odd parts respectively of a Hurwitz polynomial,

can be expressed in one of two ways. The first 1 4
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1M2N2 - N2 M2' where ' indicates
¶ = 2 2 differentiation (3.46)22 -N2 s=jw

is the polynomial representation. The second29

N N1 1'_ _ 1 ]= Si
T s s +s. 2 2

1 1 S - S
i=l s=jw i=l i s=jw

is in terms of the left-half s-plane pole locations of H(s).

Using analytical continuation such that T is valid for all complex s,
29

the following properties of T can be deduced:

a. T(s) has two zeros at s =

b. T(s) is an even function

c. T(s) is positive, real and bounded for s = jw.

The necessary and sufficient conditions that an even rational function of s be
29

a group delay function of an all pole transfer function are:

a. The poles have quadrantal symmetry, and there are no poles on

the jw axis.

b. The residues of left-half plane poles are 1/2, right half plane

poles -1/2. Equivalently if s2 is replaced by p, the resiude of

any pole is the square root of the pole location.

From the foregoing, it is now possible to pick one of the equiripple

rational functions developed in Chapter 2 and force it into being a group delay

function. At the outset, it is noted that the rational function chosen must

(1) be an even function and (2) have a numerator degree of two less than the

denominator. Condition (2) and the fact that a constant is being approximated

fix the approximation to Case IV. The degree of the denominator will be 2N,

hence, from Table 1 the total number of arbitrary constants is n + 4 = 2N + 2.

Two of these constants are specified by fixing the polynomial P = c and the
o 0

relative ripple E. Also from Table 1, the maximum number of peak deviations is
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2N + 1. Because the function is even, one extreme point will always occur at

the origin; the others will be symmetrical about w = 0. Thus, the total

maximum number of arbitrary peak deviations is N, but this is exactly the num-

ber of arbitrary constants yet to be specified. Therefore, it can be con-

cluded that

a. The polynomial P = c can be made any convenient value (for this0 0

problem let c = I).0

b. The ripple factor E is arbitrary.

c. The N pole locations can be fixed by varying the N unspecified

peak deviation frequencies until the residue condition is met.

The resulting left half plane poles of the equiripple rational

function can then be used to obtain a transfer function H(s)

with an equiripple group delay.

d. The equal ripple group delay will look similar to the illustration

of Figure 15.

Using the notation of Figure 15 and the rational function in (2.14b),

the proposed group delay, as a function of w is:

N-1
22

2 2 2

w2 f (w2  w2i 2
1=1

(w) = + E - 2E -I= N- N odd

2 2 2
2 -H2w_ w2) H (w2- w2 i ;:1

w2i) I + E 1 2
1=1 i=l

(3.48)

N

H Cw w2 2i

T(w) =1 + E - 2E: i=l N N even.
N N-2
2 2 2 2 -E 2 2 2 2 2 2 2

H (2 w2i W1+- 2 (W W (W 1 W 2 +l)
i =1 i=l
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T( W)

N odd

1-GI"--

I Ii

I I I
I I I F

W5 s 4 W3  W2 W1

Figure 15. The equiripple group delay approximation of a constant
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2 2
Using analytic continuation, i.e., letting s =- w , and then, since T is an

2
even function, letting s = p the above becomes

N-1
2

2 E p (p + u 2 i) 2

i=l
T(p) = E +-- N-; N odd

2 2
2 l- E ur)2

Pii (P +u 2i) 2 E (p + ul) (p + u 2
2i 1 + E 1 i. 2i+l

i=l i=l

(3.49)
N

2 E H (p + u2i )2

T(p) =1+ E - N N-2 ; N even

S~2
(P+U 2 _1 - E u (i+ i)2

"I (p +u 2 i) 1 + (p + U1 ) H (P +u2 i+
i=i=l

where u 2; =1 , 2, N.

It is interesting to note at this point that the results of Ulbrich
29

and Piloty2 9 could be duplicated by letting uI = 1 and letting the average

delay be an unknown quantity. The ripple factor E, under these circumstances,

would be an absolute delay. Because of the transformation involved, Ulbrich

and Piloty could not be this flexible.

Abele2 did not use an explicit rational function in his work but

imposed constraints on the numerator and denominator polynomials of (3.46).

These constraints appear in a form similar to the numerator and denominator of

(3.48)..

Prior to the publication of Abele's work this author worked out closed

form solutions to the equiripple group delay for n = 1 and 2, using an approach

similar to that of Abele. Helman 16, using Bernstein's Chebyshev rational

function, also obtained solutions for n = 1 and i. In Helman's technique, how-

ever, it is necessary to find the zeros of a high order polynomial to obtain

the desired solution.
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A closed form solution for the polynomial coefficients of the trans-

fer functions
a

0
1 s+a

0
(3.50)

b
H2 =2 0

s + bI s + b°

such that the group delay is equiripple, will now be given. Using (3.46) the

group delay of (3.50) is
a

0
2 2

a -s
0

(3.51)
2

bob - b1 s
22 2 2 4

b + (2b - bl2 )s s

which, to be equiripple, must also be equal to (3.48). Using analytic contin-

uation and simplifying, (3.48) becomes for n = 1 and 2

(-E 2) 2
2E W1

1 2 1 -E 2
s - 2EWo2E o

(3.52)

E2 (2w2 -Wl)s s+E~w2
2 2 4 2 _ W12) s12 4

s + (2E 4 w 2  3 W. s + 4W2

where

E -1 1 +E
1+- E

E - E
2 1 E

EE = 1
3 = -E 1

E 1
4 1 -E 1
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Equating the coefficients of (3.51) to those in (3.52) and solving

the resulting simultaneous equations, the solutions for n = 1 and 2 are found

to be

n :1

W 2 2E(l - E)
1 -E

(3.53)
1a -

n =2:

= 4E 2 3 + E 1 + E -(I + E)j
w2 E- 2 1-2 '_ý 2€ i

(1 - E )

b° : • w2

1 - E2 /2E 2
A lI+-E 2l

bI E = 2T- 2l

Obviously, the equations for n greater than two become so complicated

that a closed form solution is no longer possible. Numerical answers) on the

other hand, can still be obtained by using a high speed digital computer to

perform the many operations required in an interative solution.

There are many approaches which can be used in solving non-linear

simultaneous equations.I117 One method is the Newton-Raphson technique. This

procedure has an advantage over many others in that, if the initial guess is

within the region of convergence, the convergence is extremely rapid. A dis-

advantage of the method lies in the fact that the region of convergence for

many problems of this type is small. For the problem at hand the wi's will

be iterated. This means, if the Newton-Raphson procedure is used, that the

initial guesses must be known reasonably accurately. Such an estimate can be

made very easily if it is reasoned that the wits for increasing N will follow

a definite pattern. Furthermore, this pattern has already begun with a closed

form solution for n = 1, 2.
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Briefly, the method of solution undertaken is as follows:

a. From a knowledge of lower order solution, a set of wi's is

picked to correspond to a large ripple factor E (itis found

experimentally that the region of convergence is larger for

large E).

b. Using these values of wi, the denominator of (3.49) is factored

and the residues obtained.

c. Knowing that the residues squared less the root locations must

be zero gives N equations, F to be satisfied in terms of the

N unknowns wi, i=l, ... N.

d. The partial derivatives aFi/a•i are obtained numerically in the

approximate form

6F F.(w. + 8w.) - F (w.)

i i

where 6 is a small constant.

e. The N simultaneous equations (Newton-Raphson)

N bF.

=-F. j = 1, ... , N (3.55)
ii

are solved for the unknowns L~w..

f. The initial values of w. are replaced by wi + Aw.1 1

g. The above is repeated (usually from 4 to 8 times) until the

w.'s are made as small as the numerical accuracy of the com-
1

puter allows. The error commonly obtained is from one part

in 10 10 to one part in 107 for N ranging from 3 to 10.

h. When the set of solutions wi is known, it is then used for

the initial guesse, and the ripple factor E is given a smaller

value.

The pole locations of the all pole equiripple group delay filter

resulting from the above program are tabulated in Table 2 of the appendix for

N = 3, ... , 10, each with E = 0.005, 0.01, and 0.05. For comparative purposes,
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TABLE 2

Root locations of an N pole (N = 2 to 10) equiripple group delay
filter for 3 values of ripple, E. The normalization is such that the mean
low frequency delay is unity.

E = 0:005 E = 0.01 E = 0.05

real pprt, imag. part real part imag. part real part imag. part

2 -1.4021451 t.85237134 -1.3628732 t.94649670 -1.2039728 t1. 0 4 1 6 9 5 4

3 -1.9088240 0.0 -1.8061331 0.0 -1.4703023 0.0
-1.5693900 t 2 .015181 2  -1.5022964 t2. 0 8 0 2 2 7 5  -1.2765428 t 2 . 2 9 6 3 3 11

4 -2.1050989 t1.1051383 -1.9643081 t1. 1 4 5 9 9 3 9  -1.5460122 tl. 2 6 2 1 8 9 7
-1.6498925 t3.2 3 5207 3  -1.5669472 t3.3388487 -1.3079526 t 3 . 6 5 3 0 7 5 3

5 -2.3081926 0.0 -2.1262469 0.0 -1.6218304 0.0
-2.1996486 t2. 3 3 6 5 6 6 4  -2.0381080 t2. 4 1 4 4 4 2 1  -1.5791674 t2.62421 3 5

-1.6951436 t 4 . 5 3 6 3 797 -1.6028093 t 4 . 6 7 2 1 4 4 3  -1.3250626 t 5 .0 6 4 2 0 9 5

6 -2q4057414 tl. 2 3 3 9 2 6 8  -2.2016824 tl. 2 7 0 4 0 2 4  -1.6550387 t4.3628473
-2.2532646 t 3 . 6 4 6 1 5 2 2  -2.0794685 t 3 . 7 5 4 7 7 3 4  -1.5974133 t 4 . 0 3 8 9 4 2 8

-1.7235697 t 5 .890 5 3 2 8  -1.6252314 t6.0529615 -1.3357252 t6.5084283

7 -2.5044409 0.0 -2.2777117 0.0 -1.6882400 0.0
-2.4611483 ±2.5460921 -2.2440387 t2.6127150 -1.6733428 t2. 7 7 8 3 9 1 3
-2.2872444 i5. 0 0 6 5 0 4 9  -2.1055654 ±5.1407019 -1.6088716 t-5.4857180
-1.7428862 t7.2812168 -1.6404479 t7.4661369 -1.3429725 t7.9747231

8 -2.5604843 il. 3 1 2 8 1 1 8  -2.3203970 ti. 3 4 2 7 9 4 5  -1.7065422 til. 4 1 5 7 3 2 8
-2.4963531 t3.9086731 -2.2708293 t4.0003415 -1.6848570 t4.22 5 8 5 93
-2.3105097 t-6.4018708 -2.1234089 t6. 5 5 77 0 9 0  -1.6167055 t-6.953096
-1.7567883 t8.6983493 -1.6513970 t8.9025775 -1.3482052 t9.4567365

9 -2.6168521 0.0 -2.3632467 0.0 -1.7248403 0.0
-2.5961134 t2.6761673 -2.3474107 t2.7309954 -1.7180599 t2. 8 6 3 4 2 5 3
-2.5205210 t5. 3 0 5 8 9 5 1  -2.2891886 t5.4187559 -1.6927410 i5. 6 9 4 6 2 4 4
-. 23273558 t7.8226335 -2.1363241 t7.9971129 -1.6223879 t8.4373817
-1.7672335 10.135398 -1.6596318 t10.356477 -1.3521532 ±10.950485

10 -2.6526863 tl. 3 6 3 5 8 1 4  -2.3903646 ±1.3883671 -l.7363559 t-1.4477569
-2.6205920 t4.0 7 4 1 3 7 0  -2.3659368 t 4 . 1 4 9 9 6 4 2  -1.7259501 t4.3324074
-2.5380595 t 6 . 7 2 8 1 9 1 9  -2.3025079 t6.8593217 -1.6984663 t7.1 7 8 5 7 2 3
-2.3400882 t9. 2 6 2 5 8 6 8  -2.1460838 t9.4533690 -1.6266905 t 9 . 9 3 2 2 8 17
-1.7753412 ±11.587925 -1,6660347 11.823921 -1.3552374 t12.453322
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Table 3 gives (a) the zero frequency delay (for a unity 6 db bandwidth), (b)

the ratio of the 3 db to 6 db attenuation points, (c) the ratio of the equiripple

approximation interval to the 6 db attenuation points, and (d) the percentage

overshoot of the impulse response. Assuming the maximum of the equiripple group

delay transfer function occurs at zero frequency (this assumption is true for

N odd; and for N even if E is smaller than about 0.05), the numerator constant

of the transfer function can be made equal to the denominator constant and the

magnitude characteristics vs. angular frequency can be computed. A plot of this

characteristic is shown in Figure 16 for N = 3, ... , 10 and E = 0.005. The cor-

responding attenuation curves for 0.005 < 0.05 are but slightly different. As

E becomes larger (---.i) the magnitude response departs from that given in Figure

16. Two major differences are noted: (1) the individual poles in the transfer

function become apparent by the lumpy nature of response, and (2) the high fre-

quency attenuation is a few db greater.

For small E, the attenuation curves are almost identical to those of

the corresponding Bessel or maximally flat delay filter28 up to about the 10 db

attenuation points. For higher frequencies the attenuation becomes larger.

The applications of constant group delay filters are, primarily, for

the transmission of pulsed information. Thus, the impulse response of such a

filter is of prime interest. Two families of curves are given in Figures 17

and 18 for the impulse responses (N = 3, ... , 10) with E = 0.005 and 0.05

respectively. From these responses the following conclusions can be drawn:

a. The pulses are nearly symmetrical about the time t = T . This is0

particularly true for large N.

b. The impulse response maximum is almost independent of N.

c. The overshoot decreases with an increase in N.

d. The curves are not plotted to sufficient accuracy to observe

the peak of the over or under shoots. However, from the com-

puter data it is noted that for N > 7 the over or undershoot ap-

proaches a constant of 0.2 and 2.0 percert for E = 0.005 and

C = 0.05 respectively. The figures predicted in the introduction

were about 0.1 and 1.0 percent respectively.

The reason the overshoot and asymmetry is greater for small N is that

the group delay approximation interval is not as large as the passband of the
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TABLE 3

With a unity 6 db radian frequency bandwidth (a) the low frequency
mean delay, (b) the 3 db bandwidth, (c) the equiripple group delay approxi-
mation interval, and (d) the impulse response overshoot (C = 0;0051 E = 0.05)
are given.

E = 0.005

N w An
o 3db/W 6db W T/W6db

2 1.97316 .701656 .389385
3 2.51335 .742110 .715918 2.3

4 3.11611 .731226 .962641 2.9
5 3.62909 .721310 1.18577 2.5

6 4.07041 .718634 1.38658 1.7
7 4.45741 .713878 1.57773 .9
8 4.82706 .717055 1.75023 .4

9 5.16313 .709500 1.91449 .2
10 5.48223 .716544 2.06791 .2

E = 0.01

2 1.97566 .707682 .460990
3 2.53967 .744943 .793434

4 3.16442 .727498 1.0260

5 3.64538 .722188 1.26t77
6 4.11155 .717549 1.45456

7 4.47961 .713319 1.65060
8 4.86091 .718993 1.81672

9 5.18980 .706297 1.98182

10 5.50975 .720700 2.13315

E = 0.05

2 2.01019 .737244 .668501
3 2.63387 .742351 .992804 3.1

4 3.33354 .711244 1.19497 3.1

5 3.65745 .736920 1.47683 2.2
6 4.29086 .704986 1.59647 2.1

7 4.45445 .722572 1.86774 2.1
8 4.99602 .733237 1.96240 2.2
9 5.22731 .691956 2.16169 2.2

10 5.59256 .755409 2.28950 2.25
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filter. Thus, the higher frequency components arrive out of phase causing

irregularities in the impulse response.

3,5 Narrow Band Approximation of Linearly Decreasing Group Delay

This chapter will be concluded after the formulation of the equi-

ripple, linearly decreasing, narrow band group delay problem has been investi-
20

gated. A graphical solution to this problem has appeared in the literature

but as of yet an analytical one has not.

Consider an all pass transfer function

N (s + s.) (s + s.*)

Tr(s) = ( - 1 where Res. < 0 (3.56)
£(s -s.i) (s - s*i~l i

with an even number of complex poles. The numerator will give the same delay

as the denominator. Therefore, the total delay can be obtained by inserting

a multiplying factor of two into (3.47), giving

N

T(j)1 + (3.57)
5. - s.* s + s. s + S.*i i ii =l s=jw

Letting si =- ai + jwi'

(3.58)

N

T(jw) + + . + + 7i + j( W + Wi) - . + j(W - i

i=l

The narrow band approximation is obtained by noting that if wi >> a and w W
i 1

W N then the first and third term of (3.58) are negligible for the

frequency band of interest. With the definitions

w = a constant frequency displacement0

w =w-w = u+jv

• u.=w.-w

vi = W i

1 1=0 VF
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the narrow band group delay is given in the approximate form

N

-(W F + U- (3.59)
Lw[ -- vi w - -j

i=l 1 11 1

N

S-W. -. - W
il 1 1

where wi = ui + jvi.

The following properties can now be observed about the narrow band

group delay:

a. There are two poles at w =

b. The poles are symmetrical about the real axis.

c. The residues are ± j.

c. The denominator is of even degree.

e. The rational function is neither odd nor even.

From these properties it is evident that the above described rational function

fits Case V. If such a function is to approximate the straight line T - ku in0

the interval (o, uI) with an equiripple error it will appear as shown in

Figure 19. Reference to Table 1 indicates that the total number of arbitrary

constants is n - Z + 5 = N + 2. One of these constants (uN+ 2 = 0) has already

been specified. It will require N degrees of freedom to satisfy the residue con-

dition. This leaves one more constant which can be fixed independently. Let it

be E. From Figure 19 and (2.13) the equiripple narrow band group delay takes

the form

N N

(u - k1 )U Ji (u - u2i) - (u - k 2 ) (u - u 1 ) H (u - u21+l)2

i=l i=lN N -k(3.60)
N N

u -i (u-u 2 (u - ui) r- (u- u2 i+l )2

i=l i=l

where
T +E

T - E
k 2 0 k
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4NI )U 2IA-LNt1 FLN H2z•L

Figure 19. The narrow band group delay approximating a straight line in an
equiripple manner
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In order to make the numerator 2 degrees less than the denominator

requires 3 simultaneous, non-linear equations. This in addition to the residue

condition will fix the N + 3 unknown constants in (3.60). A solution of this

problem has not been attempted. Because of the large number of equations, it

will indeed be a difficult one.

I
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4. A NUMERICAL PROCEDURE FCR OBTAINING CONSTANT GROUP

DELAY WITH EQUIRIPPLE ERROR AND EXAMPLES

There are many problems of an equiripple or pseudo equiripple nature

which are difficult, if not nearly impossible, to formulate by the equiripple

rational function of Chapter 2. Two such problems are considered in this chapter.

The first is a logical extension of the constant group delay approximation

undertaken in Section 3.4; the ripples are weighted such that they increase with

frequency. The second is the determination of the pole locations of an all-

pass network to compensate the non-constant group delay characteristics of a

sharp cutoff filter.

The proposed method of solution for these two proollems utiliz-es the

rapid convergence properties of the Newton-Raphson iteration technique. The

steps taken to obtain an equiripple or pseudo equiripple solution are outlined

below:

a. A crude solution is found in which the desired number of ripples

are present. This solution depends upon the nature of the prob-

lem; in some cases it is easily obtained, in others it is more

difficult.

b. If there are N arbitrary unknown parameters available, then N

equations, Fi, i=l ... N are formed by setting the N distances

from the maxima or minima to a known reference equal to zero.

c. The maxima and minima, if not known analytically, are obtained
17

numerically by Newton's method.

d. If the reference mentioned in (b) is chosen appropriately, then

after one iteration, using Newton-Raphson, the N equations are

solved with sufficient accuracy that the reference can be shifted

towards the desired ultimate solution. The above process is then

repeated until the final reference value has been reached.

The two problems mentioned above will now be used as examples to

illustrate this procedure.

Example (4.1):

The group delay can be made to approximate a constant over a larger

interval by increasing the ripple factor. This increase, however, causes more ¶
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over and undershoots to be present (introduction). As a compromise it seems

reasonable that the group delay should approximate a constant best where most

of the spectral energy falls, or where the magnitude function is largest. With

this type of weighted error the approximation interval would be greater, and

there would be less distortion in the impulse response.

The problem is thus two fold, (1) to pick a desirable weighting

function, and (2) to determine the pole locations of an all pole transfer

function such that the peaks and valleys of the group delay fall on the boundary

of this weighted error region.

One attractive weighting function is

2
(YZn E2A 1 ) (W/W ) (4.1)

error= E1 E

where

E = the zero frequency error

E2 = the error at the end of the approximation interval wI

With this weighting function, a typical group delay (n = 7) will be as shown

in Figure 20. Obviously, a crude approximation to this problem is already

known, i.e., the equiripple approximation developed in Section 3.4. The N

pole locations can now be specified in terms of the N peak deviations occuring

at w 2 , ..." IN+ by means of the N non-linear equations

2

i+l (Y(,n E2 A ) (+1-(• )
F. =(w i+l) -L1 + (-1) E, E = 0 (4.2)

for i=l, ... I N.

These equations, in turn, are function of C 2 and the pole locations. That
1 2' n h oeloain.Ta

F. is a function of the poles can be seen from the expressions for the group1

delay

N

T(W ) 2 2 i 2 (4.3)
+~ S i
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Figure 20. The group delay with an exponentially increasing error ripple
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and the maxima and minima, the latter being zeros of

N

.d T =(w ) + ).) = 0 . (4.4)
dw i=l 2+ s

An initial choice of the pole locations and the references E1 and E2

can be made such that the set F. is solved to a reasonable degree of accuracy
1

in one iteration. A new E1 and E2 are now chosen and the process repeats

until the desired solution results. Many factors dictate the number of

iterations required to drift the poles into the neighborhood of the solution.

Among these are: (a) the required overall change in E1 and E2 from the

starting values, and (b) the pessimistic) or optimistic, choice of the incre-

mental changes in E and E 2 A pessimistic choice requires many more itera-

tions than necessary and an overly optimistic choice results in a solution

outside the region of convergence, requiring a new start. Once E and E2

reach their final values, continued iteration will give the necessary exacti-

tude to the pole locations.

A computer program was written to perform the above operations. Very

few iterations were required for the final answers to be accurate to at least

8 significant figures.

A typical example, with N = 10) 1i = 0.01, and E2 = 0.16, has the

pole distribution shown in Figure 21. For comparison, the initial pole dis-

tributions of the equiripple group delay filter with E = 0.01, and a Bessel

filter are given also.

The effect of the weighted ripple approximation on the impulse

response is best illustrated by a low order example. With N = 3, Ei = 0.005

and E2 = 0.08 the impulse response is computed and compared to that of the

equiripple group delay (E = 0.005) as illustrated in Figure 22. Two differences

are noted in the figure. One is that the symmetry is improved about the im-

pulse's maximum due to the increased group delay approximation interval. The

other, increased overshoot, is a decided disadvantage. Both of these differences,

however, are smallY and what is more, these differences become less noticeable

for higher N.
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configurations unity delay
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Example (4.2):

There are many existing procedures for compensating the non-constant

delay characteristics of sharp-cutoff filters.7)12)15)27 Foremost among these

methods is Darlington's Chebyshev polynomial series approach10 which many

authors have used.12J15J27 This method requires that the group delay be

expanded in a Fourier series, and various dominant terms in the series are

made negligible by an appropriate choice of all-pass network constants.

This method has one disadvantage, i.e., the number of Fourier series terms

contributing to the group delay error is unnecessarily large when the group

delay of a sharp cutoff filter is being expanded over an interval that extends

beyond the filter's cutoff.
1 2

This example is used to illustrate a method wherein the poles of an

all pass compensating network can be found to give an overall equiripple group

delay characteristic to the low and all-pass filter combination. Further-

more, the delay can be made equiripple as far beyond cutoff as is desired.

Before the problem proper is started, one property of a minimum

phase sharp cutoff filter needs to be investigated. Guillemin, using the

Hilbert transform, has shown that the group delay of an ideal filter (as

defined in Section 3.3) increases in a monotonic manner until it reaches a

peak at or near the filter's cutoff. Beyond this point the group delay de-
14

creases monotonically to zero. This type of behavior is indeed observed in
24

the classical Butterworth and the low ripple Chebyshev filter (for larger

ripples the group delay increases but in a non-monotonic manner). The group

delay of a typical sharp cutoff lowpass filter is shown in Figure 23. In

order that the overall filter - all-pass combination possess a constant group

delay, the shaded area must be added by the all-pass (an all-pass giving neg-

ative group delay is unrealizable). An equiripple error solution to this

problem can now be obtained in the following sequence:

a. It is noted that the narrow peak occuring at the cutoff wc

is due primarily to the pole in the low pass filter which is

nearest the cutoff frequency, and also nearest the jw-axis of

the complex s-plane.

b. An equally spaced pole distribution parallel to the jw-axis

will give an overall group delay characteristic that is pseudo
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T

Wc

Figure 23. The group delay of a typical sharp cutoff filter. The shaded area
is the amount of delay which must be added by an all-pass section
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equiripple. The closer the poles are to the jw-axis, the

larger is the ripple.
1 4

c. If the pole distribution of (b) is chosen such that it includes

the pole mentioned in (a), then an "almost" equiripple group

delay can be achieved. The pole locations and the delay char-

acteristics for this combination are shown in Figure 24.

d. In the work that follows assume that an even number, N, of

complex poles have been added to the fixed complex pole.

The N equations

F. = (w.) - r(wi+) = 0
i i i+2 (4.5)

i 11i ... N

will be of an even number and can be solved by Newton-

Raphson to determine the exact locations of the added N

poles to give an exact equiripple group delay. Once N and

the fixed pole location have been specified, no further control

exists over the ripple E or the average delay To.o

e. The group delay for the above equiripple configuration can be

written in the form

N s
T(2 k I _+T W 2 (4.6)

= - 2 2 + + (4.6)
i=l

where Tfp is the group delay of the fixed complex pole. The

value of k is one when the added poles are simple. Again using

Newton-Raphson to solve (4.5), the value of k can be increased

from one to two in about 5 single iteration steps. This makes

the added poles double.

f. The remaining poles of the low pass filter can now be included

in the group delay to give

N M- 2

2 s2 fp2 K 2 s2
____-_+ i (4.7)

Si=fw +s i=l 1 si
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where M is the number of filter poles. The value of K can be

gradually changes from zero to one using the Newton-Raphson

technique to solve (4.5). This process shifts the added pole

locations such that the equiripple group delay is still main-

tained.

g. The conpensation is completed by noting that the group delay

of one double order pole at s = - aI + jwI is the same as one

simple pole at s = - uI + jw1 together with one zero located

at s = a1 + jWI. This latter combination gives the all-pass

network.

For convenience two classifications are given to the compensator

poles. Type A is given to the complex pole pairs whose imaginary part is

less than the cutoff frequency. Similarly, Type B is given to those poles

with an imaginary part greater than the cutoff frequency.

From the digital computer program written to perform the indicated

steps, two different all-pass compensators were obtained fromthe Butterworth

filters of degrees 4 through 8. One compensated the group delay up to the

cutoff frequency (one Type A section); the other compensated the group delay

up to and beyond the cutoff (one Type A and one Type B section). The cor-

responding pole locations are given in Table 4. The impulse responses of

the Butterworth filters (degrees 4-8) with (a) no compensation, (b) one A sec-

tion and (c) one A and one B section are shown in Figures 25, 26, and 27

respectively. The Butterworth filter of degree 3 with Type A compensation

will not work by this method because the dominant pole is not close enough

to the imaginary axis and the addition of another complex pole pair results

in a delay without ripples. This particular case has already been solved by

O'Meara with a single real pole all-pass section19 and needs no further dis-

cussion.

Several conclusions which in turn agree with the idealized time

domain studies of Bangert can be drawn from an inspection of Figures 25-27.

Some of these conclusions are:

a. Type A compensation doesn't necessarily decrease the magnitude

of the main side lobe, it merely puts the large side lobe in

front of the main pulse instead of behind it.
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TABLE 4

The following table gives the pole-zero locations of the compensating
all-pass network and the filter being compensated (To = low frequency mean delay,
AT - peak deviation from T ).

Compensator Filter Comments
pole-zeros poles

real part imag. part real part imag. part

t.688654 t±2.30652 -1.00000 0.0 Butterworth, N=3, lB section
- .500000 t. 8 6 6 025 T 0=2.936, AT=.4611

t.7 6 9 34 7  t .420376 - .382683 t. 9 2 3880 Butterworth, N=4, IA section
- .923790 t. 3 8 2 6 8 4  ¶o=6.630, AT=.01338

t.587409 t .371540 - .382683 i. 9 2 3880 Butterworth, N-4, 1A and lB
t.386700 tl. 4 2 3 4 7  - .923879 t. 3 8 26 8 4  section, TO=8.270, AT=.08257

t.500331 t .374832 -1.00000 0.0 Butterworth, N=5, IA and 1B
t.329 5 6 6  t 1 . 4 3 5 35  - .309017 t. 9 5 1 0 5 6  section, T --9.180, AT=.2155

- .809017 t.587785

.644130 t .411718 -1.00000 0.0 Butterworth 1 N=5, IA section
- .309017 t.951056 T 0 =7.711, 4T=.06597
- .809017 t.587785

t.54 6 4 26 t .404039 - .258819 ±.965926 Butterworth, N=6, 1A section

- .965926 t.258819 To=8.770, AT=.1735
- .707107 t. 7 0 7 1 0 7

t.433629 t .374337 - .258819 t.965926 Butterworth, N=6, 1A and lB
t.2 8 7 0 8 7  ti.43698 - .965926 t.258819 section, To=i0.09, AT=.4094

- .707107 t.707107

t.469585 t .397092 -1.00000 0.0 Butterworth, N=7, 1A section

- .222521 t.974928 To=9.803, AT=.3422
- .623490 t.781831
- .900968 t. 4 3 3 8 8 5

t.380686 t .371971 - .222521 t.974928 Butterworth, N=7, IA and lB
t.254003 tl. 4 3 4 9 6  - .623490 t-.781831 section, TO=lI.01 AT=.6574

-. 900968 t.433885

-1.0000 0.0

t.408057 t..390432 - .195090 t.980785 Butterworth, N=8, 1A section
- .831470 t.555570 TO=10.81P aT=.5715

- .980787 t.195090
- .555570 t.831470

t.337518 t .368411 - .195090 ±.980785 Butterworth, N=8, IA and lB

t.227328 ti. 4 3 15 5  - .831470 t.555570 section, To=11.92, AT=.9525
- .980787 t.195090
- .555570 ±.831470

t.198711 t .164874 - .111963 ti. 0 1 1 5 6  Chebyshev, 1/2 db ripple,
t.179438 t .795079 - .293123 t-.625177 N=5) 3A and lB sections
±t.197993 t .469677 - .362320 0.0 To=21.37, LT=.7671

t.12 9 7 6 1 tl.20926
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b. The time from the excitation to the time the pulse has decayed

to a small value is independent of the delay compensation.

c. With Type A and B sections, the main pulse and the two large

sidelobes are very close to sin x/x.

d. The distortion terms predicted in the introduction are of the

form (assuming 100d efficiency)

m sin(t - T + 2T
distortion = + (1) n E ,35 o on (4.8)(t -• T+2T )

0 oon

Using the 8th degree Butterworth filter with one A and one B

section the above is (m = 6, n = 16, To = 11.9 and E = .08)

sin(t - T + 8.9)
distortion = ± .0186 • - T 8.9) (4.9)

0

Without actually plotting the sum of the distortion term and

.35 sin(t - T0 )/t - T it can be seen that this will give a very close

picture of Figure 27 (curve n = 8), since not only are the sign and the

multiplying constant of the distortion term about correct, but also the magni-

tude of the delay shifts. From these results it is observed that the dis-

tortion terms so arrange themselves that the physical system does not display

an anticipatory effect.

One more example of compensation will be given. This is a 5th

order Chebyshev filter (1/2 db ripple) compensated with three A sections and

one B section. The impulse response is shown in Figure 28. Indeed, for this

example the output is very close to sin x/x for a considerable time on both

sides of the main lobe.

Other filters up to 8"th order have been compensated by this method.

One difficulty was encountered with large ripple Chebyshev filters (2 db ripple).

The group delay of this filter is not a monotonically increasing function for

frequencies less than cutoff. Several small local minima and maxima are present.

This necessitates an incremental change in K of (4.7) to be very small. Other-

wise the computer program will evaluate the wrong minimax and hang up. Because

of this, considerable computer time is required (about 4 minutes on the CDI 1604

for a sixth order filter with 5 or 6 section of compensation).
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Problems of the preceding type can be worked much faster if inter-

polation schemes are used. As a parameter, K in (4.7) for example, is changed

the past pole locations are remembered. From these, linear or parabolic inter-

polation can be used to estimate future locations. This method has been used

on problems of the above type with very favorable results.

In summary, this chapter has made use of the digital computer's

ability to perform the many iterations required in going from a rough guess

to:a useful or desirable solution. Indeed, by modifying Example (4.2) slightly,

the equiripple group delay problem could have been solved.

1
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5. SUMMARY, CONCLUSIONS AND FURTHER PROBLEMS

A rational function which approximates a polynomial in an equiripple

manner has been developed. The limitations of the Chebyshev rational function

of Helman and Bennett mentioned in Chapter 1, have been overcome. Some dif-

ferences in these two functions are: the old form has arbitrary pole locations

and the new one has arbitrary error maxima and minima; no transformations are

involved in the new rational function, hence, the coefficients of the numerator

and denominator are simple algebraic combinations of the maxima and minima

error frequencies. This is in strong contrast to Bennett's form which depends

upon a radical in a transformation. Consequently, the numerator of his rational

function is cluttered with radicals, the even powers of which give a polynomial

and, hopefully, the odd powers cancel.

Several examples were given to illustrate the use and flexibility of

the new rational function. Some examples were used which have been treated

using the old rational function; namely, the group delay and magnitude squared

function approximations. These problems were adequately handled by the new

rational function. In addition, several problems were undertaken which were

handled easily by the new rational function. These in turn would be difficult

or impossible to solve with the old rational function. Examples of this latter

type are given in the sections on even and odd network function parts approxi-

mations.

It can be concluded that the new rational function can be a useful

tool in approximating a low order polynomial to give an equiripple error. This

is especially true when less than the maximum number of ripple is desired, or

when the placement of the maxima and minima points is important.

As stated in Chapter 1, there are many problems which cannot be

adequately handled by either equiripple error or rational function. However,

many of these problems are of a type that can be solved using iterative tech-

niques with the aid of a digital computer. A numerical scheme has been suggested

to accomplish this latter goal. The method depends upon an initial guess which

is already in itself a crude solution to the problem. This in many cases is a

disadvantage.

There are many new and as yet unsolved problems which have been

brought into focus by this work. Some of these are:
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1. The non-linear simultaneous equations for the linearly in-

creasing group delay need to be investigated and solved.

2. In this work it was assumed that various coefficients of the

numerator could be set equal to zero. Necessary and suf-

ficient conditions are needed to say whether this is always

possible, or if not, when.

3. An extension of the developed theory to include the approxi-

mation of pie,.ewise smooth polynomials would be useful.

4. Several degrees of freedom are used in making a transfer

function realizable by a symmetrical network. The degree

of freedom not utilized can be used to satisfy other con-

straints. One useful constraint on these freedoms would

be to require an equiripple group delay solution, (however,

the maximum number of ripples would not be present).
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